

International Space Weather Action Teams

Space weather is a global threat. Understanding and predicting space weather is a global challenge.

Call for Actions:

Unite Join I-SWAT

GLOBAL COMMUNITY HUB

• ASSESSMENT • IMPROVEMENT • DEVELOPMENT • DISSEMINATION •

GLOBAL COMMUNITY VOICE

I-SWAT Goals

- Provide a global hub for space weather community efforts toward the realization of ILWS-COSPAR Roadmap goals.
- Create an inclusive, information-sharing, agile working environment that encourage active participation, emergence of new leads and innovative ideas.
- Facilitate collaborative space weather research, model and tool development, testing and evaluation, and efficient utilization of observational data.
- Enable **rapid incorporation** of latest **research** findings into space weather forecasting & analysis applications, aiming to **address user needs** and **facilitate improvement of operational services**.
- Provide a channel for a **global community voice** and a **bottom-up** push for improvements and innovation.
- Engage community in strategic planning (**Roadmap updates**) based on latest scientific advances and evolving user requirements.

GLOBAL
HUB
• EXPERTISE • NOVELTY • EFFICIENCY • COLLABORATIVE ENVIRONMENT • AGILITY • VOICE

A Global Space Weather Community Initiative, a Bottom-up Voice and an Action Hub.

A hub for realization of global Roadmap goals & national action plans. A joint force to accelerate progress & maximize return on investments. An agile collaborative working environment. A global community voice.

I-SWAT is a Hub Facilitating Multi-Way Connections Between Key Elements of Space Weather Ecosystem

I-SWAT brings together domain experts, model & application developers, space weather service providers (e.g., ISES), and expert-users of space weather information (e.g., mission specialists, infrastructure engineers).

RESEARCH

A HUB 4 TRANSITION 2 OPERATIONS

OPERATIONS

ASSESSMENT

Assessment of observations and model output quality, prediction accuracy and reliability. Tracking progress against established metrics and benchmarks. Providing feedback to model developers. Prototyping of forecasting & analysis techniques for potential transition to operations (i.e., operational **SERVICES**).

DISSEMINATION

Development of forecasting and analysis tools and global networks of applications and archives for interactive assess to models, simulations, observational data, impact information.

Incorporation of latest advances in **UNDERSTANDING**, **OBSERVATIONS** & **MODELING** into space weather forecasting & analysis applications.

Sun-to-Impact I-SWAT Clusters (by Domain / Phenomena)

		<i>Impacts</i>
Heliosphere - H	ionosphere-atmosphere (geospace - G) system response to solar drivers	
Time of CME arrival.	G1. Geomagnetic	Electric power systems, GICs
thin CME proaching geospace.		Positioning / Navigation / Communication
		(Aero)space assets - Satellite / debries drag - Satellite / aviation
	Time of CME arrival. sma parameters and gnetic field structure thin CME proaching geospace. SEP in heliosphere.	Time of CME arrival. sma parameters and gnetic field structure thin CME croaching geospace. (geospace - G) system response to solar drivers G1. Geomagnetic environment. G2. Ionosphere / atmosphere variability.

I-SWAT Clusters Linked to Roadmap Pathways, Timing of Space Weather Information & Character of Requirements

Timing of Space Weather Information	Character of Requirements	Roadmap Pathways	I-SWAT Clusters
Climatology & Extremes: past and future. Risk assessment. Mission planning. Design specifications.	1	S to H1 to G:G1-G2	
	Mission planning. Design specifications.	2	S to H to G:G3
Archives of past conditions & Historic-events-based model validation. Post-facto analysis of space weather impact on (aero)space systems.	1	S2-S3 to H1 to G:G1-G2	
	I	2	S2-S3 to H to G:G3
From L1 to geospace.	eal-time geospace Situational awareness	1	G:G1-G2
		2	G:G3
Post-eruption From Sun to L1 to geospace	Mid-range forecasts (>12 hours)	1	S2-S3 to H1 to G:G1-G2
		3	S2-S3 to H to G:G3
Pre-flare	Short-term, mid-range, all-clear forecasts	3	S2-S3 to G:G2-G3

Cross-Domain and Special I-SWAT

- Coordinated information dissemination:
 - meta-data standards,
 - a global networks of inter-connected applications and interactive archives.
- Optimized data utilization:
 - innovative approaches for data mining, data incorporation, data assimilation, model-data comparison, quantification and reduction of uncertainties.

- Hands-on education opportunities for young scientists and developing research groups.
- Space Weather in solar system and beyond (other planets & exoplanets).

Examples of I-SWAT Tasks

REVIEW

- · Review of recommendations and guidelines.
- Inventory of available resources and on-going efforts.

ASSESSMENT

- Evaluation of data and model output quality, prediction accuracy and reliability, and application usability. Tracking progress against established metrics.
- Assessment and quantification of societal vulnerabilities.
- Prototyping for future operational capabilities (e.g., community ensemble forecasting, collaborative distributed modeling, coordinated observations).
- Identification of opportunities for improvements.

DISSEMINATION, DEVELOPMENT & IMPROVEMENT

- **Development** of forecasting and analysis tools and global networks of applications and archives for interactive assess to models, simulations, observational data, impact information.
- **Incorporation** of latest **research** findings into space weather forecasting & analysis applications.
- · Refinement of indices and activity scales.
- Improvement of archives for anomaly analysis. Improvement of data utilization.
- Analyses of climatology and past and future extremes.

COORDINATED FEEDBACK, UPDATES, INPUTS

E.g., on policies, mission planning, periodic COSPAR ILWS Roadmap updates...

I-SWAT Core Principles and Rules of the Road (under construction)

- Dynamic membership to encourage active participation and emergence of new leads and innovative ideas.
- Self-organising, non-beuracratic structure of I-SWAT teams.
- Line-up with available funding opportunities.
- Level of participation and responsibilities (TBD)
 - Moderators / Coordinators of I-SWAT clusters
 - **Team leads** (leaders are not appointed, they are emerged).
 - **Active participants** (open to all motivated groups and individuals committed to active participation)
 - **Followers** (after about 6 months of no-activity)

Opportunities for Hands-on Education

- Build upon UN / ISWI educational activities and I-REDI (International Research, Education and Development Initiative) initiated by the CCMC.
- Engage students in activities that are pushing the frontiers of research, development, and experimental operations.
- Create an environment for students from different countries and different career goals to work together for the benefit of society, and strengthen international collaborations.
- Promote space environment awareness as an important component of the new millennium core education.
- Address a growing need for the next generation professionals to understand the fundamentals of the Sun-Earth system, and the impacts of space weather on humans and technologies.
- Encourage motivated graduate students to join I-SWAT projects as active participants and possibly co-leads
- Initiate **Space Weather World Relay** that will engage students from multiple *time* zones around the globe in innovative and collaborative space weather monitoring, analysis, and forecasting (possibly with UN COPUOS, COSPAR Capacity Building).